Evaluation of Liver Fibrosis Using Texture Analysis on Combined-Contrast-Enhanced Magnetic Resonance Images at 3.0T
نویسندگان
چکیده
PURPOSE To noninvasively assess liver fibrosis using combined-contrast-enhanced (CCE) magnetic resonance imaging (MRI) and texture analysis. MATERIALS AND METHODS In this IRB-approved, HIPAA-compliant prospective study, 46 adults with newly diagnosed HCV infection and recent liver biopsy underwent CCE liver MRI following intravenous administration of superparamagnetic iron oxides (ferumoxides) and gadolinium DTPA (gadopentetate dimeglumine). The image texture of the liver was quantified in regions-of-interest by calculating 165 texture features. Liver biopsy specimens were stained with Masson trichrome and assessed qualitatively (METAVIR fibrosis score) and quantitatively (% collagen stained area). Using L 1 regularization path algorithm, two texture-based multivariate linear models were constructed, one for quantitative and the other for quantitative histology prediction. The prediction performance of each model was assessed using receiver operating characteristics (ROC) and correlation analyses. RESULTS The texture-based predicted fibrosis score significantly correlated with qualitative (r = 0.698, P < 0.001) and quantitative (r = 0.757, P < 0.001) histology. The prediction model for qualitative histology had 0.814-0.976 areas under the curve (AUC), 0.659-1.000 sensitivity, 0.778-0.930 specificity, and 0.674-0.935 accuracy, depending on the binary classification threshold. The prediction model for quantitative histology had 0.742-0.950 AUC, 0.688-1.000 sensitivity, 0.679-0.857 specificity, and 0.696-0.848 accuracy, depending on the binary classification threshold. CONCLUSION CCE MRI and texture analysis may permit noninvasive assessment of liver fibrosis.
منابع مشابه
Effect of Bias in Contrast Agent Concentration Measurement on Estimated Pharmacokinetic Parameters in Brain Dynamic Contrast-Enhanced Magnetic Resonance Imaging Studies
Introduction: Pharmacokinetic (PK) modeling of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is widely applied in tumor diagnosis and treatment evaluation. Precision analysis of the estimated PK parameters is essential when they are used as a measure for therapy evaluation or treatment planning. In this study, the accuracy of PK parameters in brain DCE...
متن کاملInfluence of the Magnetic Field Strength on Image Contrast in Gd-EOB-DTPA-enhanced MR Imaging: Comparison between 1.5T and 3.0T
PURPOSE We quantitatively investigated hepatic enhancement in gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance (MR) imaging at 1.5T and 3.0T. METHODS A total of 40 patients who underwent Gd-EOB-DTPA-enhanced MR imaging were included in the study. Precontrast and hepatobiliary-phase images acquired at a low flip angle (FA, 12°) and hepatobil...
متن کاملAutomatic Prostate Cancer Segmentation Using Kinetic Analysis in Dynamic Contrast-Enhanced MRI
Background: Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) provides functional information on the microcirculation in tissues by analyzing the enhancement kinetics which can be used as biomarkers for prostate lesions detection and characterization.Objective: The purpose of this study is to investigate spatiotemporal patterns of tumors by extracting semi-quantitative as well as w...
متن کاملANALYTICAL STUDY OF EFFECT OF BILAYER INORGANIC AND ORGANIC COATING AROUND THE IRON OXIDE NANOPARTICLES ON MAGNETIC RESONANCE IMAGING CONTRAST
Background & Aims: In recent years, iron oxide nanoparticles have been used in contrast-enhanced magnetic resonance imaging for diagnosing a wide range of diseases. In order to provide biocompatibility and prevent the toxicity of the nanoparticles, using organic or inorganic coating around these nanoparticles is important for their application. The aim of this study is to investigate the effect...
متن کاملMicrocomputed Tomography with Diffraction-Enhanced Imaging for Morphologic Characterization and Quantitative Evaluation of Microvessel of Hepatic Fibrosis in Rats
BACKGROUND [corrected] Hepatic fibrosis can lead to deformation of vessel morphology and structure. In the present feasibility study, high-resolution computed tomography (CT) using diffraction-enhanced imaging (DEI) was used to represent three-dimensional (3D) vessel microstructures of hepatic fibrosis in rats and to differentiate different stages of hepatic fibrosis using qualitative descripti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2015 شماره
صفحات -
تاریخ انتشار 2015